定义 | (t换为k,jω换为ejω得DTFT) | | |
正变换 | F(jω)=∫−∞∞f(t)e−jωtdt | F(s)=∫−∞∞f(t)e−stdt | F(z)=∑k=−∞∞f(k)z−k |
| | | |
反变换 | f(t)=2π1∫−∞∞F(jω)e−jωtdω | f(t)=2πj1∫σ−∞σ+∞F(s)e−stds | |
| | | |
性质 | | | |
线性 | | | |
| | | |
延时特性 | f(t−t0)↔F(jω)e−jωt0 | f(t−t0)↔F(s)e−st0 | 增序:f(k+n)↔zn[F(z)−∑i=0n−1z−if(i)] |
| | | |
移频特性 | f(t)ejωct↔F[j(ω−ωc)] | f(t)es0t↔F(s−s0)] | 减序:f(k−n)↔z−n+1[F(z)+∑i=−1−nz−if(i)] |
| | | |
尺度变换 | f(at)↔∥a∥1F(jaω) | f(at)↔∥a∥1F(as) | akf(k)↔F(az) |
| | | |
奇偶虚实性 | | | |
| | | |
对称特性 | f(t)↔F(jω)⟺F(jt)↔2πf(−ω) | f(t)↔F(s)⟺F(t)↔2πjf(−s) | |
| | | |
时域微分 | dtdf(t)↔jωF(jω) | dtdf(t)↔sF(s)−f(0−) | |
| | | |
时域积分 | ∫−∞tf(τ)dτ↔πF(0)δ(ω)+jω1F(jω) | ∫0−tf(τ)dτ↔sF(s) | |
| | | |
频域微分 | −jtf(t)↔dωdF(jω) | tf(t)↔−dsdF(s) | kf(k)↔−zdzdF(z) |
| | | |
频域积分 | πf(0)δ(t)−jtf(t)↔∫−∞ωF(jΩ)dΩ | tf(t)↔∫s∞F(p)dp | |
| | | |
卷积定理 | {f1(t)∗f2(t)↔F1(jω)F2(jω)f1(t)f2(t)↔2π1F1(jω)∗F2(jω) | {f1(t)∗f2(t)↔F1(s)F2(s)f1(t)f2(t)↔2jπ1F1(s)∗F2(s) | f1(k)∗f2(k)↔F1(z)F2(z) |
| | | |
初值定理 | | f(0+)=limt→0+f(t)=lims→∞sF(s)等 | f(0)=limz→∞F(z) |
| | | |
终值定理 | | f(∞)=limt→∞f(t)=lims→0sF(s)等 | f(∞)=limz→1(z−1)F(z) |
| | | |